Gegeben ist eine Wurzelfunktion f, vergleiche FS 8.3.3, mit

$$f(x) = \sqrt{x}$$

und es sollen folgende Fragen beantwortet werden:

- 1. Wie lautet die erste Ableitung f'?
- 2. Wie verhält sich die Kurve für $x \to 0^+$?
- 3. Wie verhält sich die Kurve für $x \to \infty$?
- 4. Was kann man zur Monotonie von f sagen?
- 5. Hat der Graph von *f* ein Minimum oder ein Maximum?
- 1. Wegen $f(x) = \sqrt{x} = x^{1/2}$ kann man f mit der Potenzregel ableiten.

$$f'(x) = \frac{1}{2} x^{-1/2} = \frac{1}{2 x^{1/2}} = \frac{1}{2 \sqrt{x}}$$

2. Der Ausdruck

$$x \to 0^+$$

bedeutet, dass der *x*-Wert immer kleiner wird, aber positiv bleibt. Die *x*-Werte nähern sich von rechts her kommend immer mehr dem Ursprung, siehe folgende Wertetabelle.

x	4	1	0.5	0.25	10^{-2}	10^{-4}	10^{-6}
f(x)	2	1	0.707	0.5	10^{-1}	10^{-2}	10^{-3}
f'(x)	0.25	0.5	0.707	1	5	50	500

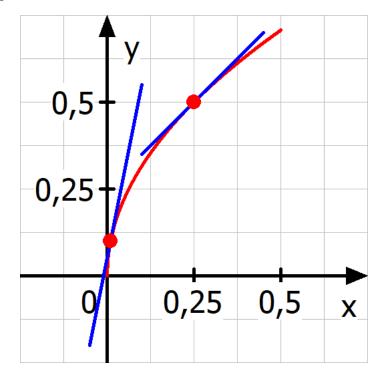
Die *y*-Werte werden erwartungsgemäss immer kleiner und die Steigung immer grösser, siehe die folgende Zeichnung, wo die beiden Punkte

$$(0.01; 0.1)$$
 und $(0.25; 0.5)$

sowie die zugehörigen Tangenten mit den Steigungen

$$f'(0.01) = 5$$
 bzw. $f'(0.25) = 1$

eingezeichnet sind.



Es gilt

$$x \to 0^+ \quad \Leftrightarrow \quad f'(x) = \frac{1}{2\sqrt{x}} \to \infty$$

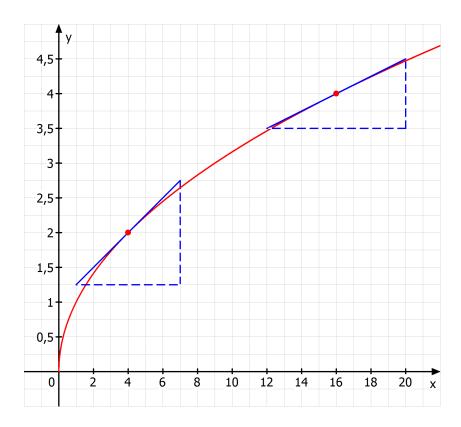
d.h. je näher ein Punkt auf der Kurve dem Ursprung kommt, desto grösser die Steigung der Kurve in diesem Punkt.

3. Der Ausdruck

$$x \to \infty$$

bedeutet, dass der *x*-Wert immer grösser wird. Die *y*-Werte werden erwartungsgemäss immer grösser und die Steigung immer kleiner, siehe die folgende Wertetabelle und Zeichnung.

х	4	9	16	10 ²	10^{4}	10^{6}
f(x)	2	3	4	10	10^{2}	10^{3}
f'(x)	0.25	0.167	0.125	0.05	0.005	0.0005



Es sind die beiden Punkte

$$(4; 2)$$
 und $(16; 4)$

sowie die zugehörigen Tangenten mit den Steigungen

$$f'(4) = \frac{\Delta y}{\Delta x} = \frac{1.5}{6} = 0.25$$

bzw.

$$f'(16) = \frac{\Delta y}{\Delta x} = \frac{1}{8} = 0.125$$

eingezeichnet. Es gilt

$$x \to \infty \quad \Leftrightarrow \quad f'(x) = \frac{1}{2\sqrt{x}} \to 0^+$$

d.h. je weiter weg ein Punkt auf der Kurve vom Ursprung ist, desto kleiner die Steigung der Kurve in diesem Punkt.

4. Der Ausdruck

$$f'(x) = \frac{1}{2\sqrt{x}}$$

kann nicht Null werden und ist immer positiv, d.h. die Kurve ist streng monoton steigend.

5. Der Graph von f hat in seinem Randpunkt (0;0) ein globales Minimum, d.h. es gibt keinen Punkt auf der Kurve, welcher einen kleineren y-Wert hat. Ein Maximum hat der Graph nicht, denn es existiert kein weiterer Randpunkt und wegen

$$f'(x) = \frac{1}{2\sqrt{x}} > 0$$

für alle $x \in D = \mathbb{R}_0^+$ ist die Kurve – wie schon erwähnt – streng monoton steigend.