2 Lineare Funktionen

Siehe dazu den Abschnitt 8.1 in der Formelsammlung.

2.1 Wissensfragen

- 1. Wie sieht die Allgemeine Form einer linearen Funktion f aus?
- 2. Gegeben sei eine Funktion f mit f(x) = mx + b. Welche Bedeutung haben die Parameter m und b und welche Werte können sie annehmen?
- 3. Gegeben sei eine Funktion f mit f(x) = mx + b. Was bedeutet es, wenn ...
 - a) ... b > 0 ist?
 - b) ... b = 0 ist?
 - c) ... b < 0 ist?
 - d) ... m > 1 ist?
 - e) ... 0 < m < 1 ist?
 - f) ... -1 < m < 0 ist?
 - g) ... m < -1 ist?
- 4. Gegeben sei eine Funktion f mit f(x) = bx + m. Welche Bedeutung haben die Parameter b und m?
- 5. Was bedeutet die Schreibweise f(2) = 1 für die Funktion f?
- 6. Was bedeutet die Schreibweise $P \in f$ für den Punkt P und die Funktion f?
- 7. Welchen Definitionsbereich D und Wertebereich W hat die Funktion f mit f(x) = mx + c?
- 8. Wie gross ist die Steigung *m* für eine Gerade welche waagrecht verläuft?
- 9. Wie gross ist die Steigung *m* für eine Gerade welche senkrecht verläuft?
- 10. Wie lautet die Zuordnungsvorschrift für eine lineare Funktion f, deren Graph auf der x-Achse verläuft?
- 11. Was bezeichnet man als Nullstelle einer Funktion und wie bestimmt man diese?
- 12. Wieviele Nullstellen kann eine lineare Funktion f mit f(x) = mx + b haben?

2.2 Steigungsfaktor

Zeichne die Funktionen (FS Abschnitt 8) mit den folgenden Zuordnungsvorschriften.

- $1. \quad f(x) = 1 \cdot x$
- $2. \quad g(x) = -1 \cdot x$
- 3. $h(x) = 0 \cdot x$

- 4. $i(x) = 2 \cdot x$
- $5. \quad j(x) = -2 \cdot x$
- 6. $k(x) = \frac{1}{2} \cdot x$

Siehe dazu die Abschnitte 8.1.1 und 8.13.7 in der Formelsammlung.

2.3 *y*-Achsenabschnitt

Zeichne die Funktionen (FS Abschnitt 8) mit den folgenden Zuordnungsvorschriften.

- 1. f(x) = x + 2
- 2. g(x) = x + 1
- 3. h(x) = x 1

- 4. $i(x) = \frac{1}{2}x + \frac{1}{2}$
- 5. j(x) = 2x 3
- 6. k(x) = -1

Siehe dazu die Abschnitte 8.1.1 und 8.13.2 in der Formelsammlung.

Schnittpunkte mit den Achsen

Bestimme die Schnittstelle(n) mit den beiden Achsen.

1.
$$f(x) = \frac{1}{2}x + 10$$

2.
$$g(x) = -2x - \frac{1}{2}$$

3.
$$h(x) = \frac{4}{3}x - 1$$

6. $k(x) = 3$

4.
$$i(x) = -\frac{1}{2}x + \frac{3}{2}$$

$$5. \quad j(x) = 2x - 3$$

6.
$$k(x) = 3$$

Interpolation 2.5

Bestimme jeweils rechnerisch die Zuordnungsvorschrift f(x) = mx + b.

1.
$$P(1; 1)$$
 und $Q(5; 9)$

2.
$$m = -3$$
 und $R(2; -4)$

3.
$$S(2; 6)$$
 und $f(0) = -2$

4.
$$f(1) = 8$$
 und $f(-1) = -2$ 5. $P(1; 2)$ und $Q(-1; 1)$

5.
$$P(1; 2)$$
 und $Q(-1; 1)$

6.
$$R(8; 1)$$
 und $S(-2; 0)$

Interpolation von paralellen und normalen Geraden

Siehe dazu die Abschnitte 8.1.4 und 8.1.5 in der Formelsammlung.

- 1. Gegeben sind eine Funktion f mit $f(x) = -\frac{3}{2}x + 2$ und ein Punkt P(1.5; -3.25). Bestimme eine Gerade g so, dass gilt $P \in g$ und $g \mid\mid f$, d.h. die beiden Geraden sollen parallel zueinander sein.
- 2. Gegeben sind eine Funktion f mit $f(x)=\frac{4}{3}x-2$ und ein Punkt $P\left(\frac{9}{2};-\frac{17}{2}\right)$. Bestimme eine Gerade g so, dass gilt $P \in g$ und $g \perp f$, d.h. die beiden Geraden sollen senkrecht zueinander
- 3. Gegeben sind eine Funktion g mit g(x) = 2x 4 und ein Punkt P(1; 4).
 - a) Bestimme eine Gerade f_1 so, dass gilt $P \in f_1$ und $f_1 || g$.
 - b) Bestimme eine Gerade f_2 so, dass gilt $P \in f_2$ und $f_2 \perp g$.
 - c) Zeichne alle drei Geraden und den Punkt *P* in dasselbe Koordinatensystem ein.
- 4. Gegeben sind eine Funktion g mit $g(x) = -\frac{1}{3}x + 1$ und ein Punkt P(-1; -2).
 - a) Bestimme eine Gerade f_1 so, dass gilt $P \in f_1$ und $f_1 || g$.
 - b) Bestimme eine Gerade f_2 so, dass gilt $P \in f_2$ und $f_2 \perp g$.
 - c) Zeichne alle drei Geraden und den Punkt *P* in dasselbe Koordinatensystem ein.

2.1 Wissensfragen (Lösungen)

- 1. Deren Zuordnungsvorschrift ist f(x) = mx + b.
- 2. Der Faktor $m \in \mathbb{R}$ ist die Steigung oder der Steigungsfaktor und der Summand $b \in \mathbb{R}$ ist das Absolutglied oder der y-Achsenabschnitt.
- 3. Die Gerade ...
 - a) ... ist nach oben verschoben.
 - b) ... ist eine Ursprungsgerade, d.h. nicht verschoben.
 - c) ... ist nach unten verschoben.
 - d) ... hat einen Steigungswinkel $\alpha > 45^{\circ}$.
 - e) ... hat einen Steigungswinkel $0^{\circ} < \alpha < 45^{\circ}$.
 - f) ... hat einen Steigungswinkel $-45^{\circ} < \alpha < 0^{\circ}$.
 - g) ... hat einen Steigungswinkel $\alpha < -45^{\circ}$.

Bei den letzten vier Aussagen zum Steigungswinkel α muss vorausgesetzt werden, dass beide Achsen des Koordinatensystems gleich skaliert sind.

- 4. Der Parameter *b* ist der Faktor beim *x* und somit der Steigungsfaktor, währendem *m* ein (konstanter) Summand ist und damit das Absolutglied oder der *y*-Achsenabschnitt. Da unser Alphabet nur 26 Buchstaben hat, ist es leider nicht möglich, einzelne Buchstaben für bestimmte Grössen zu reservieren.
- 5. Die Schreibweise f(2) = 1 bedeutet, dass der Punkt P(2; 1) auf dem Graphen von f liegt.
- 6. Die Schreibweise $P \in f$ bedeutet, dass der Graph der Funktion f durch den Punkt P verläuft, oder anders gesagt, dass der Punkt P auf dem Graphen der Funktion f liegt.
- 7. Es gilt $x \in D = \mathbb{R}$ und $y \in W = \mathbb{R}$ für $m \neq 0$ bzw. $y \in W = \{c\}$ für m = 0.
- 8. Für eine lineare Funktion deren Graph waagrecht verläuft gilt m = 0.
- 9. Eine lineare Funktion deren Graph senkrecht verläuft gibt es nicht, d.h. die Frage kann nicht beantwortet werden.
- 10. Für eine lineare Funktion f deren Graph auf der x-Achse verläuft gilt f(x) = 0x + 0, d.h. f(x) = 0.
- 11. Jeden Punkt auf der x-Achse, wo der Graph einer Funktion diese schneidet, nennt man Nullstelle. Man setzt die Zuordnungsvorschrift gleich Null, d.h. y = 0 oder f(x) = 0, und löst die dadurch entstehende Gleichung in x.
- 12. Es müssen drei Fälle unterschieden werden:
 - Genau eine falls $m \neq 0$ gilt.
 - Keine falls m = 0 und $b \neq 0$ gilt.
 - Unendlich viele falls m = b = 0 gilt.

2.2 Steigungsfaktor (Lösungen)

Für alle diese Funktionen gilt f(0) = 0, d.h. sie verlaufen durch den Ursprung, womit man einen ersten Punkt einzeichnen kann. Danach bestimmt man mittels $m = \Delta y/\Delta x$ das Steigungsdreieck, welches man ausgehend vom Punkt P(0;0) einzeichnet.

1. f(4) = 4

2. g(-4) = 4

3. h(x) = 0

4. i(1) = 2

5. j(1) = -2

6. k(4) = 2

Die Angabe der Punkte dient nur der Kontrolle deiner Zeichnung.

y-Achsenabschnitt (Lösungen)

Zuerst zeichnet man für eine Funktion f den Punkt f(0) = c mit dem y-Achsenabschnitt c ein. Danach bestimmt man mittels $m = \Delta y/\Delta x$ das Steigungsdreieck, welches man ausgehend vom Punkt P(0; c)einzeichnet.

1.
$$f(0) = 2$$
 und $f(2) = 4$

1.
$$f(0) = 2$$
 und $f(2) = 4$
2. $g(0) = 1$ und $g(-2) = -1$
3. $h(0) = -1$ und $h(4) = 3$
4. $i(0) = \frac{1}{2}$ und $i(3) = 2$
5. $j(0) = -3$ und $j(3) = 3$
6. $k(0) = -1$ und $k(6) = -1$

3.
$$h(0) = -1$$
 und $h(4) = 3$

4.
$$i(0) = \frac{1}{2}$$
 und $i(3) = 2$

5.
$$j(0) = -3 \text{ und } j(3) = 3$$

6.
$$k(0) = -1$$
 und $k(6) = -1$

Die Angabe der Punkte dient nur der Kontrolle deiner Zeichnung.

Schnittpunkte mit den Achsen (Lösungen) 2.4

Zuerst ist immer der Schnittpunkt mit der y-Achse angegeben, danach die Schnittstelle mit der x-Achse, welche man Nullstelle nennt.

1.
$$f(0) = 10 \text{ und } x_n = -20$$

20 2.
$$g(0) = -\frac{1}{2} \text{ und } x_n = -\frac{1}{4}$$
 3. $h(0) = -1 \text{ und } x_n = \frac{3}{4}$ 5. $j(0) = -3 \text{ und } x_n = \frac{3}{2}$ 6. $k(0) = 3 \text{ und } x_n = n.d.$

3.
$$h(0) = -1$$
 und $x_n = \frac{3}{4}$

4.
$$i(0) = \frac{3}{2}$$
 und $x_n = 3$

5.
$$j(0) = -3$$
 und $x_n = \frac{3}{2}$

6.
$$k(0) = 3 \text{ und } x_n = n.d$$

Interpolation (Lösungen)

1.
$$f(x) = 2x - 1$$

2.
$$f(x) = -3x + 2$$

$$f(x) = 4x - 2$$

1.
$$f(x) = 2x - 1$$

4. $f(x) = 5x + 3$

5.
$$f(x) = \frac{1}{2}x + \frac{3}{2}$$

2.
$$f(x) = -3x + 2$$
 3. $f(x) = 4x - 2$ 5. $f(x) = \frac{1}{2}x + \frac{3}{2}$ 6. $f(x) = 0.1x + 0.2$

2.6 Interpolation von paralellen und normalen Geraden (Lösungen)

1.
$$g(x) = -\frac{3}{2}x - 1$$

2.
$$g(x) = -\frac{3}{4}x - \frac{41}{8}$$

1.
$$g(x) = -\frac{1}{2}x - 1$$

3. $f_1(x) = 2x + 2$ und $f_2(x) = -\frac{1}{2}x + \frac{9}{2}$

2.
$$g(x) = -\frac{3}{4}x - \frac{41}{8}$$

4. $f_1(x) = -\frac{1}{3}x - \frac{7}{3}$ und $f_2(x) = 3x + 1$