Funktionen und Transformationen

In diesem Arbeitsblatt geht es um Begriffe wie lineare und quadratische Funktionen, Wurzelfunktionen, trigonometrische Funktionen sowie Transformationen von Funktionen.

Grundfunktionen

Zeichne die Graphen der folgenden Grundfunktionen und bestimme den Definitionsbereich D sowie den Wertebereich W.

1.
$$f(x) = x$$

2.
$$f(x) = -x$$

3.
$$f(x) = x^2$$

4.
$$f(x) = -x^2$$

5.
$$f(x) = \sqrt{x}$$

6.
$$f(x) = -\sqrt{x}$$

Verschiebung in *x*-Richtung

Zeichne die Graphen der folgenden Funktionen und achte auf eine sinnvolle Skalierung der Achsen. Bestimme den Definitionsbereich D, den Wertebereich W, den Schnittpunkt mit der y-Achse und die Nullstelle(n).

1.
$$f(x) = \frac{1}{2} \left(x + \frac{3}{2} \right)$$

2.
$$f(x) = \frac{1}{2} \left(x - \frac{5}{4} \right)$$

$$3. \quad f(x) = \frac{1}{2} \left(x - \sqrt{3} \right)$$

4.
$$f(x) = (x + 1.5)^2$$

5.
$$f(x) = (x - 1.25)^2$$

5.
$$f(x) = (x - 1.25)^2$$
 6. $f(x) = (x - \sqrt{3})^2$

7.
$$f(x) = \sqrt{x + 1.5}$$

8.
$$f(x) = \sqrt{x - 1.25}$$

8.
$$f(x) = \sqrt{x - 1.25}$$
 9. $f(x) = \sqrt{x - \sqrt{3}}$

Verschiebung in *y*-Richtung

Zeichne die Graphen der folgenden Funktionen und achte auf eine sinnvolle Skalierung der Achsen. Bestimme den Definitionsbereich D, den Wertebereich W, den Schnittpunkt mit der y-Achse und die Nullstelle(n).

1.
$$f(x) = \frac{1}{2}x + \frac{3}{2}$$

2.
$$f(x) = \frac{1}{2}x - \frac{5}{4}$$

3.
$$f(x) = \frac{1}{2}x - \sqrt{3}$$

4.
$$f(x) = x^2 + 1.5$$

5.
$$f(x) = x^2 - 1.25$$
 6. $f(x) = x^2 - \sqrt{3}$

6.
$$f(x) = x^2 - \sqrt{3}$$

7.
$$f(x) = \sqrt{x} + 1.5$$

8.
$$f(x) = \sqrt{x} - 1.25$$
 9. $f(x) = \sqrt{x} - \sqrt{3}$

$$9. \quad f(x) = \sqrt{x} - \sqrt{3}$$

Ursprungsgeraden in einen Punkt verschieben

Wie lauten die Zuordnungsvorschriften der gegebenen linearen Funktionen f, wenn man ihre Graphen G(f) in den Punkt P verschiebt?

1.
$$f(x) = \frac{1}{4}x$$
 in $P(2; 1.5)$

2.
$$f(x) = -\frac{1}{2}x$$
 in $P(-1.5; -0.5)$

3.
$$f(x) = \frac{3}{2}x$$
 in $P(2.25; 0.25)$

4.
$$f(x) = -\frac{3}{4}x$$
 in $P(1; 1.75)$

Streckung/Stauchung in y-Richtung

Zeichne die Graphen der folgenden Funktionen und achte auf eine sinnvolle Skalierung der Achsen.

1.
$$f(x) = 2x$$

2.
$$f(x) = \frac{1}{2}x$$

3.
$$f(x) = -\frac{1}{2}x$$

4.
$$f(x) = 2x^2$$

5.
$$f(x) = \frac{1}{2}x^2$$

5.
$$f(x) = \frac{1}{2}x^2$$
 6. $f(x) = -\frac{1}{2}x^2$

7.
$$f(x) = 2\sqrt{x}$$

8.
$$f(x) = \frac{1}{2}\sqrt{x}$$

9.
$$f(x) = -\frac{1}{2}\sqrt{x}$$

Streckung/Stauchung in y-Richtung bei sin- und cos-Funktion

Zeichne die Graphen der folgenden Funktionen und achte auf eine sinnvolle Skalierung der Achsen.

1.
$$f(x) = 2 \sin(x)$$

2.
$$f(x) = -2\sin(x)$$

3.
$$f(x) = \frac{1}{2}\sin(x)$$

4.
$$f(x) = -\frac{1}{2}\sin(x)$$

$$5. \quad f(x) = 2\cos(x)$$

$$6. \quad f(x) = -2\cos(x)$$

7.
$$f(x) = \frac{1}{2}\cos(x)$$

8.
$$f(x) = -\frac{1}{2}\cos(x)$$

In der Formelsammlung im Abschnitt 8.11 findest du die Graphen der Sinus- und Cosinusfunktion.

4.7 Transformationen kombiniert

Zeichne die Graphen der folgenden Funktionen und achte auf eine sinnvolle Skalierung der Achsen. Bestimme den Definitionsbereich D, den Wertebereich W, den Schnittpunkt mit der y-Achse und die Nullstelle(n).

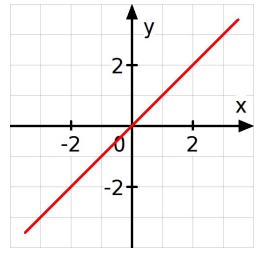
1.
$$f(x) = \frac{6}{7} (x - \frac{7}{4}) + \frac{3}{4}$$

2.
$$f(x) = -\frac{1}{2} \left(x - \frac{3}{2}\right)^2 + 2$$

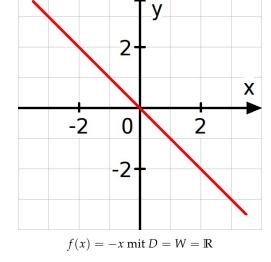
3.
$$f(x) = \frac{3}{2}\sqrt{x+1} - \frac{9}{2}$$

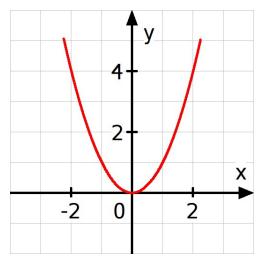
4.
$$f(x) = \frac{3}{2} \sin(x + \frac{\pi}{2}) - 2$$

4.1 Grundfunktionen (Lösungen)

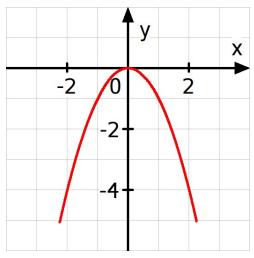


$$f(x) = x \text{ mit } D = W = \mathbb{R}$$

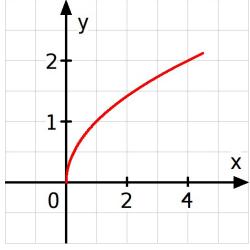




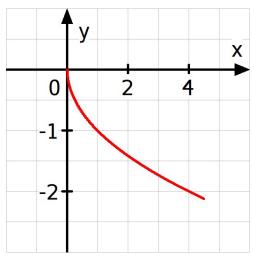
$$f(x) = x^2 \text{ mit } D = \mathbb{R} \text{ und } W = \mathbb{R}_0^+$$



$$f(x) = -x^2 \text{ mit } D = \mathbb{R} \text{ und } W = \mathbb{R}_0^-$$



$$f(x) = \sqrt{x} \text{ mit } D = \mathbb{R}_0^+ \text{ und } W = \mathbb{R}_0^+$$



$$f(x) = -\sqrt{x} \text{ mit } D = \mathbb{R}_0^+ \text{ und } W = \mathbb{R}_0^-$$

Verschiebung in x-Richtung (Lösungen)

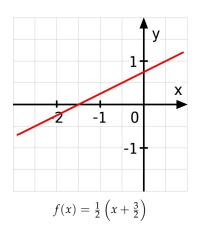
4.2.1 Aufgaben 1 bis 3

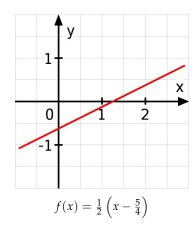
Hier gilt immer $D = W = \mathbb{R}$.

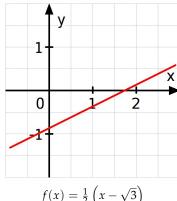
1.
$$f(0) = \frac{3}{4}$$
 und $x_n = -\frac{3}{2}$

2.
$$f(0) = -\frac{5}{8}$$
 und $x_n = \frac{5}{4}$

3.
$$f(0) = -\frac{\sqrt{3}}{2} \approx -\frac{1.732}{2} = -0.866$$
 und $x_n = \sqrt{3} \approx 1.732$







$$f(x) = \frac{1}{2} \left(x - \sqrt{3} \right)$$

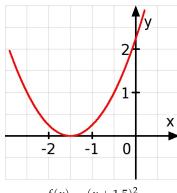
4.2.2 Aufgaben 4 bis 6

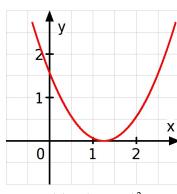
Hier gilt immer $D = \mathbb{R}$ und $W = \mathbb{R}_0^+$.

4.
$$f(0) = \frac{9}{4}$$
 und $x_n = -1.5$

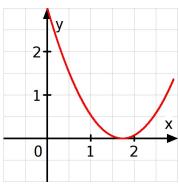
5.
$$f(0) = \frac{25}{16}$$
 und $x_n = 1.25$

6.
$$f(0) = 3$$
 und $x_n = \sqrt{3} \approx 1.732$





$$f(x) = (x - 1.25)^2$$



$$f(x) = (x - \sqrt{3})^2$$

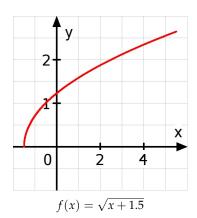
4.2.3 Aufgaben 7 bis 9

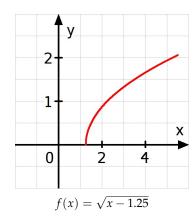
Hier gilt immer $W = \mathbb{R}_0^+$.

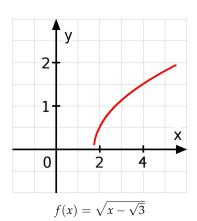
7.
$$f(0) = \sqrt{1.5}$$
 , $x_n = -1.5$ und $D = [-1.5; \infty[$

8.
$$f(0) = n.d.$$
, $x_n = 1.25$ und $D = [1.25; \infty[$

9.
$$f(0) = n.d.$$
 , $x_n = \sqrt{3} \approx 1.732$ und $D = [\sqrt{3}; \infty]$







4.3 Verschiebung in *y*-Richtung (Lösungen)

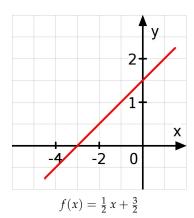
4.3.1 Aufgaben 1 bis 3

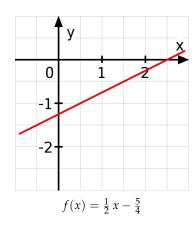
Hier gilt immer $D = W = \mathbb{R}$.

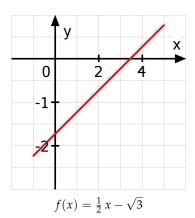
1.
$$f(0) = \frac{3}{2}$$
 und $x_n = -3$

2.
$$f(0) = -\frac{5}{4}$$
 und $x_n = \frac{5}{2}$

3.
$$f(0) = -\sqrt{3} \approx -1.732$$
 und $x_n = 2\sqrt{3} \approx 2 \cdot 1.732 = 3.464$







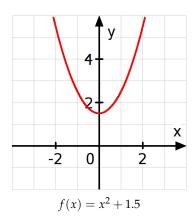
4.3.2 Aufgaben 4 bis 6

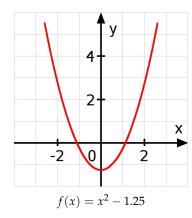
Hier gilt immer $D = \mathbb{R}$.

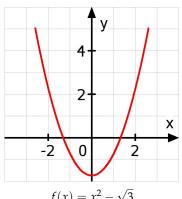
4.
$$f(0) = 1.5$$
, $x_n = n.d$. und $W = [1.5; \infty[$

5.
$$f(0) = -1.25$$
, $x_n = \pm \sqrt{1.25} \approx \pm 1.118$ und $W = [-1.25; \infty[$

6.
$$f(0)=-\sqrt{3}\approx -1.732$$
 , $x_n=\pm \sqrt[4]{3}\approx \pm 1.316$ und $W=[-\sqrt{3}\,;\,\infty[$







 $f(x) = x^2 - \sqrt{3}$

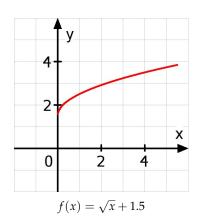
4.3.3 Aufgaben 7 bis 9

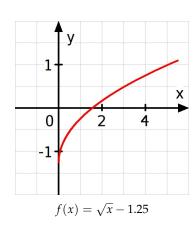
Hier gilt immer $D = \mathbb{R}_0^+$.

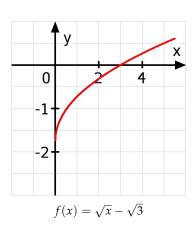
7.
$$f(0) = 1.5$$
 , $x_n = n.d$. und $W = [1.5; \infty[$

8.
$$f(0) = -1.25$$
 , $x_n = \frac{25}{16}$ und $W = [-1.25; \infty[$

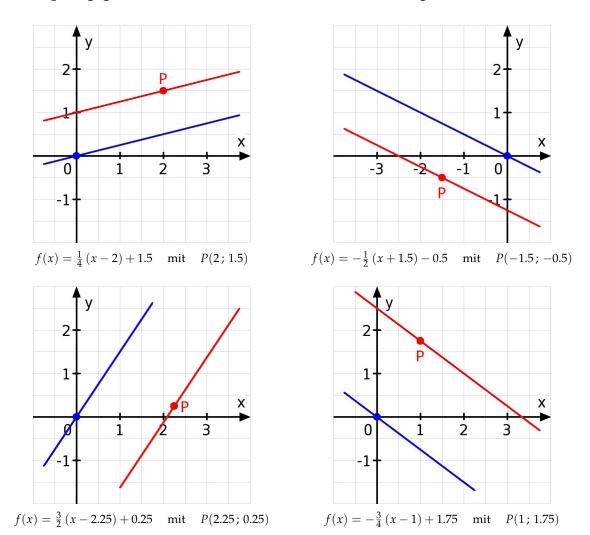
9.
$$f(0) = -\sqrt{3} \approx -1.732$$
 , $x_n = 3$ und $W = [-\sqrt{3}; \infty[$







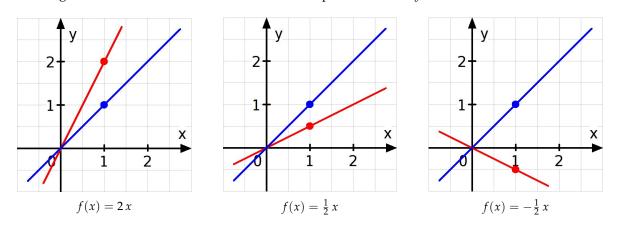
4.4 Ursprungsgeraden in einen Punkt verschieben (Lösungen)



4.5 Streckung/Stauchung in *y*-Richtung (Lösungen)

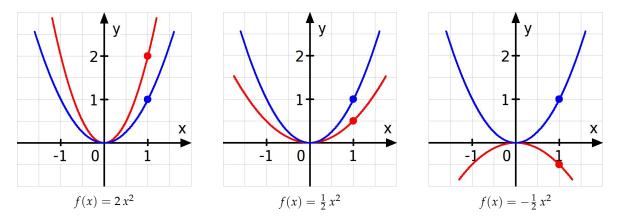
4.5.1 Aufgaben 1 bis 3

Als Referenz dient die blaue Funktion g mit g(x) = x für welche g(1) = 1 gilt (blauer Punkt). Der Streckungsfaktor vor dem Ausdruck x dient als Multiplikator für die y-Werte.



4.5.2 Aufgaben 4 bis 6

Als Referenz dient die blaue Funktion g mit $g(x)=x^2$ für welche g(1)=1 gilt (blauer Punkt). Der Streckungsfaktor vor dem Ausdruck x^2 dient als Multiplikator für die y-Werte.

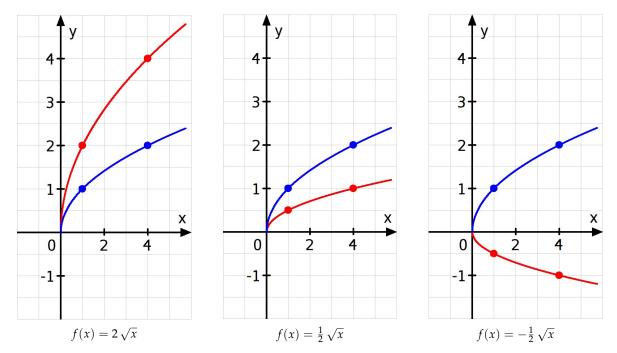


4.5.3 Aufgaben 7 bis 9

Als Referenz dient die blaue Funktion g mit $g(x) = \sqrt{x}$ für welche

$$g(1) = 1$$
 und $g(4) = 2$

gilt (blaue Punkte). Der Streckungsfaktor vor dem Ausdruck \sqrt{x} dient als Multiplikator für die y-Werte.



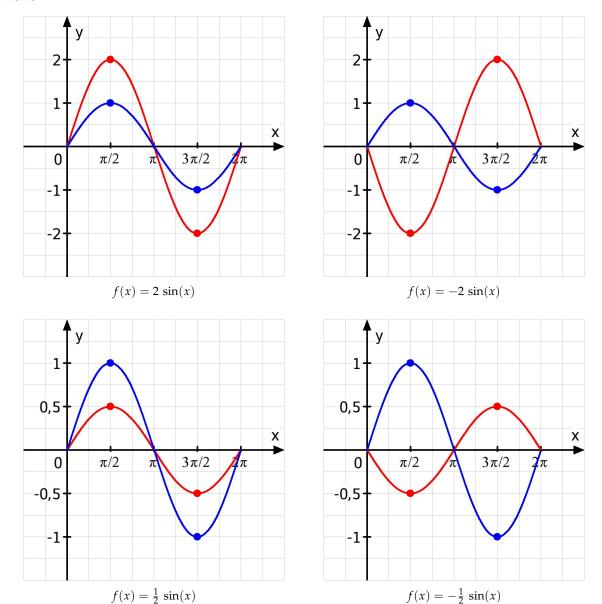
4.6 Streckung/Stauchung in y-Richtung bei sin- und cos-Funktion (Lösungen)

4.6.1 Aufgaben 1 bis 4

Als Referenz dient die blaue Funktion g mit $g(x) = \sin(x)$ für welche

$$g\left(\frac{\pi}{2}\right) = 1$$
 und $g\left(\frac{3\pi}{2}\right) = -1$

gilt (blaue Punkte). Der Streckungsfaktor vor dem Ausdruck $\sin(x)$ dient als Multiplikator für die y-Werte.



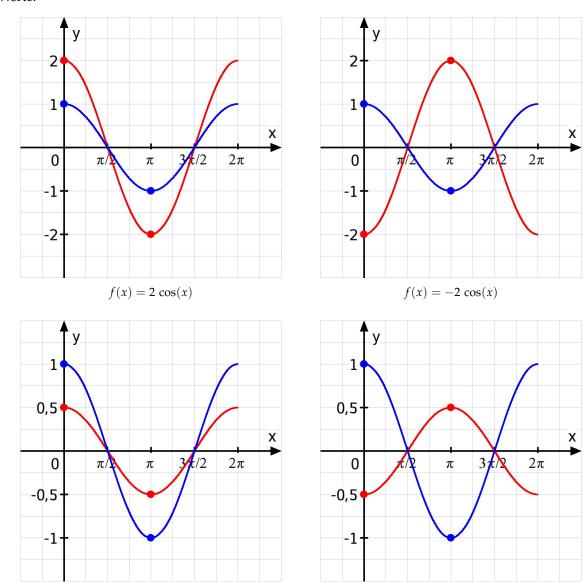
4.6.2 Aufgaben 5 bis 8

Als Referenz dient die blaue Funktion g mit $g(x) = \cos(x)$ für welche

 $f(x) = \frac{1}{2}\cos(x)$

$$g(0) = 1$$
 und $g(\pi) = -1$

gilt (blaue Punkte). Der Streckungsfaktor vor dem Ausdruck $\cos(x)$ dient als Multiplikator für die y-Werte



 $f(x) = -\frac{1}{2}\cos(x)$

4.7 Transformationen kombiniert (Lösungen)

Die Einheit 1H steht für ein Häuschen, bzw. ein Karo.

1. Für eine lineare Funktion mit $m \neq 0$ gilt immer $D = W = \mathbb{R}$. Mit

$$f(0) = \frac{6}{7} \left(0 - \frac{7}{4} \right) + \frac{3}{4} = -\frac{6}{4} + \frac{3}{4} = -\frac{3}{4}$$

erhält man den Schnittpunkt mit der y-Achse und mit

$$f(x) = \frac{6}{7}\left(x - \frac{7}{4}\right) + \frac{3}{4} = 0 \quad \Leftrightarrow \quad x = \frac{7}{8} = 0.875$$

die Nullstelle. Als Skalierung bietet sich 8H = 1E an wegen den 7/8 und weil die Gerade durch den Punkt P(7/4; 3/4) verläuft. Ausgehend von dort kann man das Steigungsdreieck mit

$$m = \frac{\Delta y}{\Delta x} = \frac{6}{7} = \frac{-6}{-7} = \frac{-6H}{-7H}$$

eintragen, siehe Zeichnung. Dass man mit dem Steigungsdreieck als 2. Punkt der Gerade die Nullstelle trifft ist Zufall.

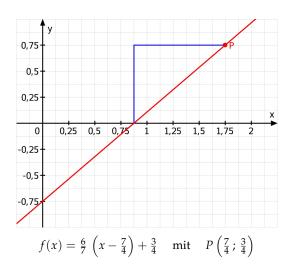
2. Für eine quadratische Funktion gilt immer $D = \mathbb{R}$. Wegen a = -0.5 < 0 ist die Kurve nach unten offen und mit $y_s = 2$ um 2 nach oben verschoben, d.h. es gilt $W = [2; -\infty[$. Mit

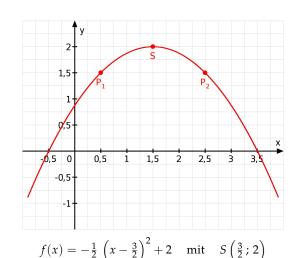
$$f(0) = -\frac{1}{2} \left(0 - \frac{3}{2} \right)^2 + 2 = -\frac{9}{8} + \frac{16}{8} = \frac{7}{8} = 0.875$$

erhält man den Schnittpunkt mit der y-Achse und mit

$$f(x) = -\frac{1}{2}\left(x - \frac{3}{2}\right)^2 + 2 = 0 \quad \Leftrightarrow \quad \left(x - \frac{3}{2}\right)^2 = 4 \quad \Leftrightarrow \quad x_{1,2} - \frac{3}{2} = \pm 2 \quad \Leftrightarrow \quad x_{1,2} = \frac{3}{2} \pm 2$$

die Nullstellen $x_1 = -0.5$ und $x_2 = 3.5$. Als Skalierung bietet sich 4H = 1E oder 8H = 1E an wegen den 7/8. Ausgehend vom Scheitelpunkt S kann man den Streckungsfaktor a = -0.5 eintragen, was die Punkte P_1 und P_2 ergibt, siehe Zeichnung.





3. Für den Definitionsbereich gilt

$$x+1 \ge 0 \quad \Rightarrow \quad D = [-1; \infty[$$

und für den Wertebereich

$$1.5\sqrt{x+1} \ge 0 \quad \Rightarrow \quad 1.5\sqrt{x+1} - 4.5 \ge -4.5 \quad \Rightarrow \quad W = [-4.5; \infty]$$

d.h. der Graph "startet" im Punkt P(-1; -4.5)

$$f(0) = \frac{3}{2}\sqrt{0+1} - \frac{9}{2} = \frac{3}{2} - \frac{9}{2} = -3$$

erhält man den Schnittpunkt mit der y-Achse und mit

$$f(x) = \frac{3}{2}\sqrt{x+1} - \frac{9}{2} = 0 \Leftrightarrow \sqrt{x+1} = 3 \Leftrightarrow x+1 = 9 \Leftrightarrow x = 8$$

die Nullstelle.

Mit f(3) = -1.5 erhält man einen weiteren Punkt Q(3; -1.5) zum einzeichnen.

4. Gemäss Abschnitt 8.11 der Formelsammlung gilt für die Sinusfunktion (blaue Kurve)

$$D = \mathbb{R}$$
 und $W = [-1; 1]$

wobei die Transformationen an D nichts ändern. Hingegen gilt wegen

$$-1 \le \sin\left(\ldots\right) \le 1 \quad \Leftrightarrow \quad -1.5 \le 1.5 \sin\left(\ldots\right) \le 1.5 \quad \Leftrightarrow \quad -3.5 \le 1.5 \sin\left(\ldots\right) - 2 \le -0.5$$

für den Wertebereich W = [-3.5; -0.5].

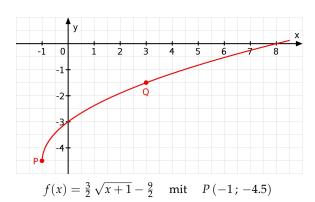
Mit

$$f(0) = \frac{3}{2}\sin\left(0 + \frac{\pi}{2}\right) - 2 = \frac{3}{2}\cdot 1 - 2 = -\frac{1}{2}$$

erhält man den Schnittpunkt mit der y-Achse und wegen

$$0 \notin W$$

gibt es keine Nullstellen. Anfangs- und Endpunkt der blauen Referenzkurve werden in die Punkte P bzw. Q verschoben, d.h. um $\pi/2$ nach links und um 2 nach unten, siehe Zuordnungsvorschrift und Zeichnung.



$$f(x) = \frac{3}{2}\sin\left(x + \frac{\pi}{2}\right) - 2$$