14 Wurzelgleichungen 1

Siehe dazu die Abschnitte 4.2 und 4.8 in der Formelsammlung.

14.1 Wissensfragen

- 1. Wann spricht man von einer Wurzelgleichung?
- 2. Ist $\sqrt{2}x = -\sqrt{3}$ eine Wurzelgleichung?
- 3. Auf was muss man achten, wenn man eine Wurzelgleichung mit geradem Exponent löst?
- 4. Auf was muss man achten, wenn man eine Wurzelgleichung mit ungeradem Exponent löst?
- 5. Gib ein Beispiel für ein Wurzelgleichung welche nur eine Scheinlösung hat.

Einfache Wurzelgleichungen

Löse die folgenden Gleichungen und gib den Definitionsbereich sowie die Lösungsmenge an.

1.
$$\sqrt{x} = 1$$

$$2. \quad \sqrt{-x} = 1$$

1.
$$\sqrt{x} = 1$$
2. $\sqrt{-x} = 1$
3. $\sqrt{x} = \sqrt[4]{2}$
4. $\sqrt{x+1} = 2$

5. $\sqrt{x-1} = 3$
6. $2\sqrt{x} = -2$
7. $\sqrt{1-x} = 4$
8. $\sqrt{x} - \sqrt{49} = 3$

9. $\sqrt{x} + 7 = 3$
10. $-\sqrt{x} = 1$
11. $\sqrt{x^2} = 3$
12. $1/\sqrt{-x} = 1$

$$4. \quad \sqrt{x+1} = 2$$

5.
$$\sqrt{x-1} = 3$$

10
$$-\sqrt{x} - 1$$

11
$$\sqrt{x^2} = 3$$

12.
$$1/\sqrt{-x} = 1$$

14.3 Wurzelgleichungen mit zwei Wurzeln

Löse die folgenden Gleichungen und gib den Definitionsbereich sowie die Lösungsmenge an.

1.
$$3\sqrt{x-6} = \sqrt{x+26}$$

1.
$$3\sqrt{x-6} = \sqrt{x+26}$$
 2. $6\sqrt{x-50} = \sqrt{x-15}$ 3. $\sqrt{x+17} = 2\sqrt{x-10}$ 4. $4\sqrt{x-20} = \sqrt{x-5}$ 5. $\sqrt[3]{x+200} = 2\sqrt[3]{x+11}$ 6. $3\sqrt[3]{x-10} = \sqrt[3]{x+198}$

3.
$$\sqrt{x+17} = 2\sqrt{x-10}$$

4.
$$4\sqrt{x-20} = \sqrt{x-5}$$

$$5. \quad \sqrt[3]{x + 200} = 2\sqrt[3]{x + 11}$$

6.
$$3\sqrt[3]{x-10} = \sqrt[3]{x+198}$$

14.1 Wissensfragen (Lösungen)

Im Folgenden ist mit Abschnitt 4.1 jener aus der Formelsammlung gemeint.

- 1. Wenn mindestens ein x unter einer Wurzel steht.
- 2. Nein, denn es steht unter keiner Wurzel ein x.
- 3. Für gerade Wurzelexponenten kommen die Abschnitte 4.1 und 4.2 zur Anwendung, d.h. man muss möglich Lösungen bez. Definitionsbereich *D* und auf Scheinlösungen testen.
- 4. Für ungerade Wurzelexponenten kommt nur Punkt 2 von Abschnitt 4.1 zur Anwendung.
- 5. Weil eine Quadratwurzel keine negativen Werte zurückgeben kann, hat die folgende Gleichung keine Lösung.

$$\sqrt{x} = -2$$

Wenn man die Gleichung beidseitig quadriert erhält man die Scheinlösung x = 4, welche eingesetzt in die Ausgangsgleichung einen Widerspruch ergibt.

14.2 Einfache Wurzelgleichungen (Lösungen)

1.
$$D = \mathbb{R}_0^+ \text{ und } L = \{1\}$$

3.
$$D = \mathbb{R}_0^+ \text{ und } L = \left\{ \sqrt{2} \right\}$$

5.
$$D = [1; \infty] \text{ und } L = \{10\}$$

7.
$$D =]-\infty; 1]$$
 und $L = \{-15\}$

9.
$$D = \mathbb{R}_0^+ \text{ und } L = \emptyset$$

11.
$$D = \mathbb{R} \text{ und } L = \{\pm 3\}$$

2.
$$D = \mathbb{R}_0^- \text{ und } L = \{-1\}$$

4.
$$D = [-1; \infty] \text{ und } L = \{3\}$$

6.
$$D = \mathbb{R}_0^+$$
 und $L = \emptyset$

8.
$$D = \mathbb{R}_0^+ \text{ und } L = \{100\}$$

10.
$$D = \mathbb{R}_0^+$$
 und $L = \emptyset$

12.
$$D = \mathbb{R}^- \text{ und } L = \{-1\}$$

14.3 Wurzelgleichungen mit zwei Wurzeln (Lösungen)

1.
$$D = [6; \infty] \text{ und } L = \{10\}$$

3.
$$D = [10; \infty] \text{ und } L = \{19\}$$

5.
$$D = \mathbb{R} \text{ und } L = \{16\}$$

2.
$$D = [50; \infty] \text{ und } L = \{51\}$$

4.
$$D = [20; \infty[$$
 und $L = \{21\}]$

6.
$$D = \mathbb{R} \text{ und } L = \{18\}$$