Lineare Gleichungen 13

Siehe dazu den Abschnitt 4.3 in der Formelsammlung.

13.1 Spezialfälle

Löse die folgenden Gleichungen und gib die Lösungsmenge an.

1.
$$3 + x = x - \lg\left(\frac{1}{1000}\right)$$

2.
$$x + 1 = x + lb(\frac{1}{8})$$

3.
$$(2+x)\cdot\sqrt{\frac{1}{4}}=\frac{x}{2}+1$$

2.
$$x + 1 = x + \text{lb}\left(\frac{1}{8}\right)$$

4. $2x \frac{1}{\sqrt[5]{-1}} - 1 = \sqrt[3]{-8}x$

13.2 Parameter

Löse die folgenden Gleichungen und gib die Lösungsmenge an.

1.
$$x + a = b$$

2.
$$\frac{1}{a}x = b$$

3.
$$2c x = 5$$
 mit $c \neq 0$

4.
$$dx = \sqrt{2}$$
 mit $d = 0$

5.
$$2cx = 5c$$
 mit $c \neq 0$

6.
$$dx = \sqrt{2}d$$
 mit $d = 0$

Parameter und Fallunterscheidung 13.3

Löse die folgenden Gleichungen und gib die Lösungsmenge an.

1.
$$-a x = 16$$

2.
$$(b-3) x = 0$$

3.
$$(c+4)x = 5$$

4.
$$dx + 2 = 2$$

5.
$$f x - 3 x = f + 3$$

6.
$$gx - \sqrt{3}x = g - \sqrt{3}$$

13.4 Parameter und Fallunterscheidung

Löse die folgenden Gleichungen und gib die Lösungsmenge an.

1.
$$ax - b = 0$$

2.
$$x p (p+3) = p^2 - 9$$

3.
$$(q^2 + q - 6) x = q - 2$$

4.
$$m^2 x - n = m + n^2 x$$

13.1 Spezialfälle (Lösungen)

1.
$$x = x \Leftrightarrow 0 = 0 \Rightarrow L = \mathbb{R}$$

1.
$$x = x \Leftrightarrow 0 = 0 \Rightarrow L = \mathbb{R}$$
 2. $x = x - 4 \Leftrightarrow 0 = -4 \Rightarrow L = \emptyset$ 3. $x = x \Leftrightarrow 0 = 0 \Rightarrow L = \mathbb{R}$ 4. $x - 1 = x \Leftrightarrow -1 = 0 \Rightarrow L = \emptyset$

3.
$$x = x \Leftrightarrow 0 = 0 \Rightarrow L = \mathbb{R}$$

4.
$$x-1=x \Leftrightarrow -1=0 \Rightarrow L=\emptyset$$

13.2 Parameter (Lösungen)

1.
$$L = \{b - a\}$$
 2. $L = \{a b\}$ 3. $L = \{\frac{2.5}{c}\}$ 4. $L = \{\}$ 5. $L = \{2.5\}$ 6. $L = \mathbb{R}$

2.
$$L = \{ab\}$$

3.
$$L = \{\frac{2.5}{6}\}$$

4.
$$L = \{\}$$

5.
$$L = \{2.5\}$$

6.
$$L = \mathbb{R}$$

Bei keiner der Aufgaben ist eine Fallunterscheidung nötig, weil entweder nicht durch den Parameter dividiert wird oder aufgrund der Aufgabenstellung klar ist, dass der Parameter gleich oder ungleich Null ist.

13.3 Parameter und Fallunterscheidung (Lösungen)

1. **1. Fall:**
$$a \neq 0 \Rightarrow L = \left\{ -\frac{16}{a} \right\}$$

2. Fall:
$$a = 0 \Rightarrow L = \{\}$$

2. **1. Fall:**
$$b \neq 3 \Rightarrow L = \{0\}$$

2. Fall:
$$b=3 \Rightarrow L=\mathbb{R}$$

2. **1. Fall:**
$$b \neq 3 \Rightarrow L = \{0\}$$
 2. Fall: $b = 3 \Rightarrow L = \mathbb{R}$ 3. **1. Fall:** $c \neq -4 \Rightarrow L = \{\frac{5}{c+4}\}$ **2. Fall:** $c = -4 \Rightarrow L = \{\}$

2. Fall:
$$c = -4 \Rightarrow L = \{\}$$

4. **1. Fall:**
$$d \neq 0 \Rightarrow L = \{0\}$$

5. **1. Fall:** $f \neq 3 \Rightarrow L = \{\frac{f+3}{f-3}\}$

2. Fall:
$$d = 0 \Rightarrow L = \mathbb{R}$$

2. Fall: $f = 3 \Rightarrow L = \{\}$

6. **1. Fall:**
$$g \neq \sqrt{3} \Rightarrow L = \{1\}$$

2. Fall:
$$g = \sqrt{3} \Rightarrow L = \mathbb{R}$$

13.4 Parameter und Fallunterscheidung (Lösungen)

1.
$$ax - b = 0 \Leftrightarrow ax = b$$

1. Fall:
$$a \neq 0 \Rightarrow L = \left\{ \frac{b}{a} \right\}$$

2. Fall:
$$a = 0 \land b \neq 0 \Rightarrow L = \{\}$$

3. Fall:
$$a = 0 \land b = 0 \Rightarrow L = \mathbb{R}$$

2.
$$x p (p+3) = p^2 - 9 \Leftrightarrow x p (p+3) = (p-3) (p+3)$$

1. Fall:
$$p \neq 0$$
 \wedge $p \neq -3$ \Rightarrow $L = \left\{\frac{p-3}{p}\right\}$

2. Fall:
$$p = 0 \implies L = \{\}$$

3. Fall:
$$p = -3 \Rightarrow L = \mathbb{R}$$

3.
$$(q^2 + q - 6) x = q - 2 \Leftrightarrow (q + 3) (q - 2) x = q - 2$$

1. Fall:
$$q \neq -3$$
 \land $q \neq 2$ \Rightarrow $L = \left\{\frac{1}{q+3}\right\}$

2. Fall:
$$q = -3 \Rightarrow L = \{\}$$

3. Fall:
$$q = 2 \Rightarrow L = \mathbb{R}$$

4.
$$m^2 x - n = m + n^2 x \iff (m+n)(m-n)x = m+n$$

1. Fall:
$$m \neq \pm n \Rightarrow L = \left\{\frac{1}{m-n}\right\}$$

2. Fall:
$$m = n \Rightarrow L = \{\}$$

3. Fall:
$$m = -n \Rightarrow L = \mathbb{R}$$