Abschätzungen

In diesem Arbeitsblatt geht es um Begriffe wie Radizieren, Wurzel, Wurzelziehen und Abschätzen von Wurzeln.

4.1 Wurzeln

Zwischen welchen nebeneinander liegenden, ganzen Zahlen liegen die folgenden Wurzeln? Benutze den TR nur zum Kontrollieren.

 $\sqrt{12}$

 $\sqrt{24}$ 2.

3. $\sqrt{26}$

 $\sqrt{1.5}$

5. $\sqrt{0.25}$ 6. $\sqrt{99}$

7. $\sqrt[3]{9}$

 $\sqrt[3]{1.6}$ 8.

9. $\sqrt[3]{0.4}$ 10. $\sqrt[4]{30}$

11. $\sqrt[5]{30}$

12. $\sqrt[6]{-30}$

4.1 Wurzeln (Lösungen)

1.
$$\sqrt{3^2} < \sqrt{12} < \sqrt{4^2} \implies 3 < \sqrt{12} < 4$$

3.
$$\sqrt{5^2} < \sqrt{26} < \sqrt{6^2} \implies 5 < \sqrt{26} < 6$$

5.
$$\sqrt{0^2} < \sqrt{0.25} < \sqrt{1^2} \implies 0 < \sqrt{0.25} < 1$$

7.
$$\sqrt[3]{2^3} < \sqrt[3]{9} < \sqrt[3]{3^3} \implies 2 < \sqrt[3]{9} < 3$$

9.
$$\sqrt[3]{0^3} < \sqrt[3]{0.4} < \sqrt[3]{1^3} \Rightarrow 0 < \sqrt[3]{0.4} < 1$$

11.
$$\sqrt[5]{1^5} < \sqrt[5]{30} < \sqrt[5]{2^5} \implies 1 < \sqrt[5]{30} < 2$$

2.
$$\sqrt{4^2} < \sqrt{24} < \sqrt{5^2} \implies 4 < \sqrt{24} < 5$$

4.
$$\sqrt{1^2} < \sqrt{1.5} < \sqrt{2^2} \implies 1 < \sqrt{1.5} < 2$$

4.
$$\sqrt{1^2} < \sqrt{1.5} < \sqrt{2^2} \Rightarrow 1 < \sqrt{1.5} < 2$$

6. $\sqrt{9^2} < \sqrt{99} < \sqrt{10^2} \Rightarrow 9 < \sqrt{99} < 10$

8.
$$\sqrt[3]{1^3} < \sqrt[3]{1.6} < \sqrt[3]{2^3} \implies 1 < \sqrt[3]{1.6} < 2$$

10.
$$\sqrt[4]{2^4} < \sqrt[4]{30} < \sqrt[4]{3^4} \implies 2 < \sqrt[4]{30} < 3$$

12.
$$\sqrt[6]{-30}$$
 ist nicht definiert